physorg.com
March 21, 2011 By Bret Eckhardt, Colin Poitras, and Tim Stobierski
Deep inside the University of Connecticut’s chemical engineering building in Storrs, Professor Richard Parnas and a team of students quietly monitor a murky brown emulsion bubbling inside an enormous 6-inch diameter glass tube like doctors carefully observing a patient undergoing surgery.
Moving among an array of flexible tubing and metal rods surrounding the nearly floor-to-ceiling device, Parnas keeps a watchful eye on a series of multicolored charts blinking on a nearby laptop. The display represents the real-time readings of a high-tech fiber-optic probe monitoring the chemical reactions taking place inside the tube. It helps Parnas, a UConn professor of chemical, materials, and biomolecular engineering, maintain the precise recipe he needs to turn a mixture of methanol, potassium hydroxide, and waste vegetable oil into nearly pure, cheap, environmentally-friendly biodiesel fuel.
Read more