Dartmouth College
Public release date: 8-Sep-2008
Research finding exploits new technology to bring us closer to alternative fuel production
Hanover, NH – A team of researchers from Dartmouth's Thayer School of Engineering and Mascoma Corporation in Lebanon, N.H., have made a discovery that is important for producing large quantities of cellulosic ethanol, a leading candidate for a sustainable and secure alternative to petroleum-derived transportation fuel. For the first time, the group has genetically engineered a thermophilic bacterium, meaning it's able to grow at high temperatures, and this new microorganism makes ethanol as the only product of its fermentation.
The study was published online during the week of Sept. 8, 2008 in the journal Proceedings of the National Academy of Science.
"Our discovery is one potential avenue for research to facilitate turning inedible cellulosic biomass, including wood, grass, and various waste materials, into ethanol," says Lee Lynd, the Paul E. and Joan H. Queneau Distinguished Professor in Environmental Engineering Design at the Thayer School of Engineering at Dartmouth. "In the near term, the thermophilic bacterium we have developed is advantageous, because costly cellulase enzymes typically used for ethanol production can be augmented with the less expensive, genetically engineered new organism."
Read the full story
No comments:
Post a Comment